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Abstract The design, synthesis, and photophysical properties
of a new fluorene-based fluorescent chemosensor, 4-((E)-
2-(2-(benzo[d]thiazol-2-yl)-9,9-diethyl-9H-fluoren-7-yl)vinyl)-
N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)benzenamine
(AXF-Al), is described for the detection of Al3+. AXF-Al
exhibited absorption at 382 nm and strong fluorescence emis-
sion at 542 nm (fluorescence quantum yield, ΦF, of 0.80). The
capture of Al3+ by the pyrazolyl aniline receptor resulted in
nominal change in the linear absorption (372 nm) but a large
hypsochromic shift of 161 nm in the fluorescence spectrum
(542 to 433 nm, ΦF=0.88), from which Al3+ was detected both
ratiometrically and colorimetrically. The addition of other metal
ions, namely Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+,
Cd2+, Hg 2+ and Pb2+, produced only minimal changes in the
optical properties of this probe. The emission band of this probe
was also accessed by two-photon excitation in the near-IR, as
two-photon absorption (2PA) is important for potential appli-
cations in two-photon fluorescence microscopy (2PFM) imag-
ing. The 2PA cross section of the free fluorenyl ligandAXF-Al
was 220 GM at 810 nm and 235 GM at 810 nm for the
Al-ligand complex, practically useful properties for 2PFM.
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Introduction

In the current climate, the public is becoming more aware of
the importance of the monitoring and removal of harmful
materials before and after they enter the biosphere. It is well
accepted that aluminum targets the brain; hence, this element
acts principally as a potent neurotoxin, with additional risk in
the perinatal stage because of the more vulnerable neuronal
tissue [1, 2]. There is also an abundance of research that has
long linked this metal with Alzheimer’s disease [3–5]. Data
also supports Al3+ acting as a toxic material for skin fibro-
blasts through the inhibition of superoxide dismutase, a ma-
terial that plays an important role in skin exposed to oxygen as
an antioxidant defense [6]. Bone is the major target tissue for
the toxic effects of Al and is the primary site of Al accumu-
lation [7], where it has been confirmed clinically, epidemio-
logically, and experimentally based on its capacity to induce
two types of histological lesions, namely osteomalacia and
adynamic bone disease [8].

Currently, the main analytical techniques used for the de-
termination of Al3+ are destructive and require an extraordi-
nary amount of expertise for sample preparation. These in-
clude flame atomic absorption spectroscopy (FAAS) [9], elec-
trothermal atomic absorption spectroscopy (AAS) [10], and
inductively coupled plasma (ICP). There have also been some
electrochemical tools available plus electroanalytical tech-
niques, such as anodic stripping potentiometry (PSA) and
anodic stripping voltammetry (ASV); this latter technique
has high sensitivity, allowing for detection limits of parts per
billion (ppb) [11]. Fluorometric techniques have been used in
the detection of the aluminum ion, including single probes
[12, 13] and nanoparticles [14], but it is still in its infancy
compared to more mature areas such as mercury [15], zinc
[15–17], and calcium probes [18].

The pursuit of selective and sensitive sensors able to mon-
itor in real time and space the concentration of analytes of
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biological, clinical, and environmental interest is generally
accepted [19]. The ever-increasing demand for effective fluo-
rescent chemosensors dictates that sensors must convert the
event of analyte recognition by a receptor into an easily
monitored and highly sensitive light signal from the chromo-
phore reporter, which acts as a signaling unit [20]. The body of
work to date is based on chromophores optimized for conven-
tional (one-photon) fluorescence. A chief drawback of this
design is that the excitation wavelengths are typically in the
range of 350–560 nm, which may cause damage to the sub-
strates [21]. This problem is averted by the development of
two-photon chemosensors [22], which allow visualization of
ions, small molecules, or even enzyme activity in living cells
and tissue using 2PFM, a procedure that employs two near
infrared (NIR) photons for excitation. Hence the impetus to
develop new probes that have two large 2PA cross sections
and high fluorescence quantum yields [23–26]. Two-photon
excitation fluorescence (2PEF) further offers intrinsic 3D
localization of a two-photon process (2PA) arising from the
quadratic relationship of emission with excitation intensity;
this limits excitation to a tiny focal volume and reduces
background fluorescence [27]. Excitation occurs by up-
conversion in the NIR region, so penetration depths are greater
and photodamage to the matrix is minimized. In the case of
biological tissues, the result is less phototoxicity coupled with
the advantage of increased tissue depth. These inherent ad-
vantages have led to considerable effort now being made to
synthesize new two-photon fluorescent (2PF) metal probes
[28].

A number of ideas constituted the design structure of this
probe. The fluorophore is based on the fluorenyl π-system,
chosen due to its inherently high thermal and photochemical
stabilities [29]. The unit can be readily functionalized in the 2,
7, and/or 9 positions, and, to date, we have worked diligently
to optimize the synthesis and linear and nonlinear optical
characterization of a number of fluorene derivatives with high
2PA [29, 30]. Recently, a number of these have been designed
as successful probes in the targeting of cell organelles in the
contemporary arena of two-photon bioimaging [28]. We also
successfully developed probes for the detection of mercury
and zinc ions [15, 16] and demonstrated their potential for use
in bioimaging [17].

Here, we provide the description of the synthesis, structural
characterization, and photophysical study of an aluminum ion
detecting probe with a D−π−A construct based on a fluorenyl
unit containing a benzothiazole motif as an electron acceptor
group (A) and an aniline unit as an electron donor group (D).
For the recognitionmoiety, we considered the chemistry of the
polypyrazole ligands, which has developed quite rapidly over
the last few decades; initiated by the late Trofimenko’s intro-
duction to scorpionates [31, 32]. The strong ability of pyrazole
and its derivatives to serve as ligands has been the research
subject of many coordination chemists, evident from the large

number of articles in this area [33–37]. However, our search
revealed no significant reference to any fluorescent metal
sensors containing these ligands. The presence of metal ions
in the same solution as other ions is common, so, when
designing a chemosensor for metal detection, it is important
to consider the relative sensitivity of the receptor to other
metals. The aniline pyrazolyl unit’s selectivity in the extrac-
tion of metals was an incentive to investigate this receptor
attached to the chromophore [38, 39]. These design features
ensure sensor reliability and multiple signaling properties,
namely visible colorimetric and ratiometric properties.

Herein, we demonstrate the ability to selectively detect
aluminum in the presence of other common ions. Quantitative
assays to determine the concentration of analyte at a limit of
2.0 μMwas also established. At low concentration of analyte,
the probe acted as a reliable fluorescence sensor. Structural
confirmation data, including single crystal x-ray crystallogra-
phy, for this new molecule is also presented. The linear
absorption, steady-state fluorescence, and fluorescence quan-
tum yield (ΦF) of the probes were measured in solvents of
different polarities to investigate possible solvatochromic
effects. A series of titrations in ethanol of the selected solutions
of metals with the probe at μM concentrations was tracked by
steady state fluorescence, and the fluorescence quantum yield
(ΦF) was calculated. The 2PA spectrum of the probe and
complex were investigated using the two-photon excitation
fluorescence (2PEF) method over a broad spectral range. The
2PA cross section (δ2PA) data indicated that this compound has
potential as a two-photon absorbing metal probe for the de-
tection of Al3+ in 2PFM. The donor and acceptor units are
spatially separated, so it will be possible to address HOMO
and LUMO on binding with the cation. Quantum chemical
calculations indicate the chromophore system displays prefer-
ential binding to the electron-deficient aluminum analyte.

Experimental Section

2,7-Dibromo-9,9-diethylfluorene (A ) [40], 7-bromo-9,9-
die thyl f luorene-2-carboxaldehyde (B ) [41] and
2-(tributylstannyl)benzothiazole (C ) [42] were prepared
according to literature procedures. Reactions were carried
out under N2 or Ar atmosphere. THF was distilled over
sodium benzophenone before use under a dry dinitrogen
atmosphere [43, 44]. All other reagents and solvents were
used as received from commercial suppliers. The 1H and 13C
NMR measurements were performed using a Varian 500
NMR spectrometer with tetramethysilane (TMS) as an inter-
nal reference (1H referenced to TMS at δ =0.0 ppm and 13C
referenced to CDCl3 at δ =77.0 ppm). FT-IR spectra were
recorded on a Perkin Elmer spectrophotometer Model PE-
1300 F0241. Elemental analyses were performed by Atlantic
Microlab. High-resolution mass spectrometry (HR-MS)
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analysis was performed at the Department of Chemistry, Uni-
versity of Florida, Gainesville, FL.

Synthesis of 7- Bromo-9, 9-Diethylfluorene-2-Carbaldehyde
(B )

Under nitrogen atmosphere and at −78 °C, n -BuLi (3.28 mL,
1.6 M in hexanes) was added dropwise over 20 min to a dry
THF solution (15 mL) containing 2,7-dibromo-9,9-
diethylfluorene (2 g, 5.26 mmol). After 1 h of stirring,
0.58 mL of DMF was added slowly to the reaction solution.
After another 2 h of stirring, the temperature of the solution
was brought back to room temperature, and the reaction was
quenched with 2 N HCl(aq). The solution was extracted with
toluene and subjected to flash column chromatography (silica
gel, hexanes/ethyl acetate 4:1). White solid was obtained
(1.52 g, 89 % yield); mp 124–125 °C (lit. mp 126–128 °C)
[41]. 1H NMR (500 MHz, CDCl3) δ: 9.77 (s, 1H), 7.57 (s,
2H), 7.53 (d, J =7Hz, 1H), 7.36 (d, J =8.5 Hz, 1H), 7.23−7.21
(m, 2 H), 1.83−1.72 (m, 4H), 0.3 (t, J =10 Hz, 6H) 13C NMR
(126 MHz, CDCl3) δ: 192.3, 153.5, 150.4, 146.8, 139.0,
135.6, 130.8, 130.4, 126.70, 126.4, 123.2, 123.1, 120.1,
56.7, 32.5, 8.5.

Synthesis of 2-(Tributylstannyl)Benzothiazole (C)

A THF solution (80 mL) of freshly distilled benzothiazole
(9.90 g, 73.3 mmol) was cooled to −78 °C. To this was added
n -BuLi (57 mL, 1.6 M) dropwise over 25 min to achieve a
deep orange solution. (n -Bu)3SnCl (30.18 g, 92.72 mmol)
was slowly added via syringe, and the reaction mixture was
stirred at this temperature for another 30 min and then slowly
bought up to −10 °C, where the reaction mixture was stirred
for a further 30 min, and gradually allowed to warm to 0 °C,
followed by the addition of aqueous KF (3%, 50 mL), turning
the reaction mixture bright yellow, followed by stirring an
additional 1 h at 10 °C. The organic layer was then extracted
with toluene and dried over anhydrous MgSO4. After concen-
tration under reduced pressure, the resulting orange liquid was
purified by vacuum distillation at 144–146 °C/0.1 mmHg (lit.
144–146 °C at 0.15 mmHg) [42]. The yellow liquid was
collected (72.80 g, 73 % yield). 1H NMR (500 MHz, CDCl3)
δ: 8.19–8.14 8.17 (dd, J =11.6, 8.2 Hz, 1H), 7.96 (dd, J =7.9,
1.9 Hz, 1H), 7.48−7.41 (m, 1H), 7.35 (m, 1H),), 1.67–1.58 (m,
6H), 1.40–1.23 (m, 12H), 0.94–0.86 (m, 9H). 13C NMR
(126 MHz, CDCl3) δ: 177.61, 156.11, 136.28, 125.26,
124.34, 122.78, 121.28, 28.87, 27.22, 13.62, 11.25.

Synthesis of 7-(Benzo[d]Thiazol-2-yl)
-9,9-Diethyl-9H-Fluorene-2-Carbaldehyde (D)

7-Bromo-9,9-diethyl-9H-fluorene-2-carbaldehyde (9.4 g,
28.55 mmol) and 2-(tri-n -butylstannyl)benzothiazole (15 g,

35.39 mmol) were dissolved in 350 mL of toluene and
degassed under vacuum and N2. Pd(PPh3)4 (0.83 g, 0.1 mmol)
was added, then the mixture was degassed for 25 min. The
reaction mixture was heated to reflux under N2. After 10 h,
TLC revealed completion of the reaction. The black mixture
was filtered through a short plug column. Toluene was re-
moved in vacuo , and the resulting solid was filtered off and
washed several times with hexane, affording 7.63 g of yellow
crystals (7.63 g, 70 % yield); mp = 181–182 °C. 1H NMR
(500 MHz, CDCl3) δ: 10.09 (s, 1H), 8.19 (s, 1H), 8.13 (m,
2H), 7.94 (m, 5H), 7.54 (t, J =7.5 Hz, 1H), 7.43 (t, J =7.5 Hz,
1H), 2.22 (m, 4H), 0.36 (t, J =7.5 Hz, 6H). 13C NMR
(126 MHz, CDCl3) δ: 192.1, 168.0, 154.1, 152.2, 151.4,
146.7, 142.7, 135.9, 135.0, 133.9, 130.5, 127.4, 126.5,
126.4, 125.4, 125.2, 123.3, 121.6, 121.4, 120.6, 56.7, 32.6,
32.5, 8.5, 8.5. HRMS-ESI C25H21NOS theoretical m/z
[M+H]+ = 384.1422, found 384.1408; theoretical m/z
[M+Na]+ = 406.1236, found 406.1220.

Synthesis of Diethyl (4-(bis((3,5-Dimethyl-1H-Pyrazol-1-)
Methyl)Amino)Phenyl)Methylphosphonate (G )

A groundmixture of (3,5-dimethyl-1H-pyrazol-1-yl)methanol
(1.03 g, 8.23 mmol) and diethyl (4-aminophenyl)
methylphosphonate (0.50 g, 2.06 mmol) was prepared in a
flask equipped with a Dean-Stark condenser. This mixture
was then heated and held at a melt temperature of 80 °C for
12 h, followed by 1H NMR monitoring. The excess pyrazole
was then removed by sublimation and the remaining product
was washed with hexanes (3×20 mL) and dried under
vacuum, revealing white solid (0.80 g, 85 % yield); mp = 89–
91 °C. 1H NMR (500 MHz, CDCl3) δ: 7.16 (d, 2H), 6.99
(d, 2H), 5.72 (s, 2H, H(pz(H4)), 5.48 (s, 4H, CH2-pz),
3.97(m, 4H), 3.07 (d, 2H), 2.18 (s, 6H), 2.03 (s, 6H), 1.21
(t, 6H). 13C NMR (126 MHz, CDCl3) δ: 147.8, 145.3,
139.4, 130.4, 125.7, 121.0, 105.7 (pz(C4)), 64.3 (CH2-pz),
62.0, 33.5, 32.4, 16.4, 13.6, 11.0. HRMS-ESI C23H34N5O3P
theoretical m/z [M+H]+ = 460.2472, found m/z [M+H]+ =
460.2458; theoretical m/z [M+Na]+ = 482.2291, found m/z
[M+Na]+ = 482.2313.

Synthesis of the Probe 4-((E)-2-(2-(Benzothiazol-2-yl)
-9,9-Diethyl-9H-Fluoren-7-yl)Vinyl)
-N,N-bis((3,5-Dimethyl-1H-Pyrazol-1-yl)Methyl)
Benzenamine (AXF-Al )

To a THF solution (10 mL) of diethyl (4-(bis((3,5-dimethyl-
1H-pyrazol-1-yl)methyl)amino)phenyl)methylphosphonate
(G ) (0.24 g, 0.52 mmol) at −78 °C was added powdered t -
BuOK (0.13 g, 1.16 mmol), resulting in an immediate color
change to pale yellow. After 30 min, the reaction mixture was
warmed to 0 °C and stirred for another 30 min at this temper-
ature. 7-(Benzo[d]thiazol-2-yl)-9,9-diethyl-9H-fluorene-2-
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carbaldehyde (D ) (0.15 g, 0.39 mmol) was then added, pro-
ducing a red reaction mixture, which was stirred for a period
of 18 h. The reaction mixture was then quenched with water,
followed by extraction with dichloromethane. This was then
dried over anhydrous Na2SO4 and the volatiles removed to
reveal crude yellow solid. The crude product was purified by
column chromatography on silica gel, eluting with a 1 % Et3N
solution of EtOAc/hexanes 3:2, affording yellow powder
(0.17 g, 63 % yield); mp = 139–140 °C. 1H NMR
(500 MHz, CDCl3) δ: 8.13 (s, 2H), 8.10−8.08 (d, 2H, J =
10 Hz), 8.03−8.02 (m, 2H), 7.92−7.90 (d, 2H, J =10 Hz), 7.78
−7.70 (m, 4H), 7.51−7.47 (m, 6H), 7.42−7.39 (d, 2H, J =
15 Hz), 7.39−7.36 (t, 3H, J =5 Hz), 7.10−7.09 (d, 1H, J =
5 Hz), 7.07−7.06 (d, 1H, J =5 Hz), 5.76 (s, 2H,H (pzH4)), 5.54
(s, 4H, CH2-pz), 2.21 (s, 6H), 2.08 (s, 6H), 1.25 (t, 4H), 0.37
(q, 6H). 13C NMR (126 MHz, CDCl3) δ: 171.3, 168.9, 151.4,
151.2, 148.1, 144.6, 139.7, 137.7, 132.4, 128.2, 127.6, 127.6,
127.4, 126.5, 125.9, 125.2, 123.2, 121.8, 121.7, 120.8, 120.7,
120.4, 120.2, 106.1(pz(C4)), 64.2 (CH2-pz), 60.6, 58.4, 56.6,
56.6, 33.0, 21.3, 13.8, 11.3, 8.8. Anal. Calcd. For
C49H54N6O2S (AXF-Al+1 mole of EtOAc); 74.40; H, 6.88;
N, 10.62; Found: C, 74.03; H, 6.88; N, 10.86. HRMS-ESI
theoretical m/z [M+H]+ = 689.3421, found m/z [M+H]+ =
689.3449; theoretical m/z [M+Na]+ = 711.3240, found m/z
[M+Na]+ = 711.3270.

X-Ray Structural Analysis

The crystal data, details of the data collection, and structure
refinement parameters for compound AXF-Al are presented
in Tables 1 and 2. A single crystal X-ray diffraction experi-
ment was carried out using a Bruker SMART APEX II dif-
fractometer with a CCD area detector (graphite
monochromated Mo Kα radiation, λ =0.71073 Å) using Θ -
scans with a 0.5° step in ω at 100 K. The semi-empirical
SADABS method was applied for absorption correction. The
structure was solved by direct methods and refined by the full-
matrix least-squares technique against F2 with the anisotropic
temperature parameters for all non-hydrogen atoms. All hy-
drogen atoms were placed geometrically and refined in a
riding model. Data reduction and further calculations were
performed using Bruker SAINT+ and SHELXTL NT pro-
gram packages.

General Instrumental Information

UV–vis absorption spectra were obtained using an Agilent
8453 UV-Visible spectrophotometer and 1.0 cm path lengths
quartz cuvettes. Fluorescence emission spectra were obtained
with a PTI QuantaMaster spectrofluorimeter with a 75-W
continuous Xe-arc lamp as a light source.

Determination of Quantum Yields

The quantum yield of the sample was obtained through a
comparison of the integrated area of the corrected emission
spectrum of the sample with that of a known standard, such as
9,10-diphenylanthracene (ϕ =0.95 in cyclohexane). The
quantum yield of the sample was calculated from Eq. 1 [45].

ϕ ¼ ϕr⋅
I

I r
⋅
ODr

OD
⋅
n2

n2r
ð1Þ

Table 1 Photophysical data for AXF-Al in solvents with varying
polarities

Solvent λmax
abs/nm λmax

em/nm Stokes shift/nm QY

Chloroform 386 498 112 1.0

DMSO 395 571 176 0.89

THF 391 503 112 0.91

EtOH 382 542 160 0.80

Table 2 Summary of the crystal data and structure refinement parameters
for AXF-Al

Compound AXF-A1

Empirical formula C48H52N6O2S

FW 777.02

T, K 100(2)

Crystal size, mm 0.40×0.30×0.20

Crystal system Triclinic

Space group P-1

a , Å 10.328(3)

b , Å 14.347(5)

c , Å 14.725(11)

α , deg. 91.127(4)

β , deg. 106.622(3)

γ , deg. 93.641(4)

V, Å3 2084.8(11)

Z 2

dc, g cm−3 1.238

F(000) 828

μ , mm−1 0.125

2θmax, deg. 60.94

Index range −14<=h<=14
−20<=k<=20
−20<=l<=20

No. of rflns collected 33189

No. of unique rflns 12568

Data/restraints/parameters 12568/0/514

R1; wR2 (I >2σ(I)) 0.0643; 0.1639

R1; wR2 (all data) 0.1076; 0.1874

GOF on F2 1.022

Tmin; Tmax 0.9403; 0.9755
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Where I and I r are the corrected integrated fluorescence
intensity of the sample and the standard; OD and ODr are the
optical density (absorbance) of the sample and the standard; n
and nr are the refractive index of the sample and the standard,
respectively.

Anisotropy

Excitation anisotropy spectra were measured using two
polarizers in the L-format method, with correction for back-
ground signals, in high-viscosity solvents (polytetrahydrofuran
and glycerol) at room temperature [46]. The experimental
details of anisotropy measurements were previously reported
[47–49].

Determination of Two-Photon Absorption Cross Sections, δ

The degenerate 2PA spectra of probe and metal-ligand com-
plexes were measured in EtOH over a broad spectral region by
the relative 2PF method [50]. Rhodamine B in methanol,
whose comprehensive characterization has been reported
[46] was used as a standard. Two-photon-induced fluores-
cence spectra were obtained with a PTI QuantaMaster spec-
trofluorimeter coupled with a mode-locked Coherent Mira
900 laser system. The pulse width of the laser was 200 fs with
a repetition rate of 76 MHz and 700 mW average power.
Fluorescence measurements were performed in 10 mm fluo-
rometric quartz cuvettes with dye concentrations ~4×10−5 M.
The values of 2PA cross sections, δ2PA, were determined by
Eq. (2).

δt ¼ δr ⋅
〈Ft〉n2t CrΦrP2

r

〈Fr〉n2rCtΦtP2
t

ð2Þ

Where, r and t describe the reference and the tested sam-
ple, respectively; <F> is the average fluorescence intensity
integrated from the 2PF spectrum; n is the refractive index of

the solvent; C is the concentration; Φ is the quantum yield;
and P is the incident power in the sample.

UV–Vis Absorption and Fluorescence Emission Titration
Procedure

The steady-state absorption and fluorescence emission spectra
of the probe were investigated in CHCl3, EtOH, DMSO, and
THF with concentrations ≥2×10−6 M at room temperature in
1 cm quartz cuvettes using an Agilent 8453 UV-visible spec-
trophotometer and PTI Quantamaster spectrofluorimeter, re-
spectively. All solvents and solutions used in these experi-
ments were checked for spurious emissions in the region of
interest and purged with N2 gas for 20 min prior to spectro-
scopic measurements. The concentrations did not exceed 2×
10−6 M, so processes of reabsorption were negligible. UV–vis
absorption and fluorescence emission titrations were
performed in EtOH. A 3.0 mL aliquot of dye solution was
prepared and the corresponding metal ion stock solution was
added. The resulting solution was agitated and recorded via

Scheme 1 Synthesis of the
fluorene-based aluminum probe
AXF-Al

Fig. 1 Normalized absorbance (solid line) and emission spectra (dashed
line) of AXF-Al in the presence of solvents with varying polarities
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UV–vis absorption and fluorescence emission spectra. Exper-
iments were performed in triplicate.

Determination of the Stoichiometry Number of the Complex

The basic Eqs. (3–5) for the determination of the ligand-metal
complexation are

Dþ nM⇌C ð3Þ
Where D is the dye molecule (ligand), M is the metal ion,

and C is the complex.

Calculation of the Binding Constants

The binding constant, K , of the metal complex was deter-
mined from Eq. 4 with the approximation the concentration of
the free metal is equal to its total concentration ([M] ≅ [M]t)
[51–53].

F−F0

Fm−F
¼ C½ �

D½ � ¼ K M½ �n ð4Þ

Where Fo, F, and Fm are the corrected fluorescence emission
intensity of the complex at initial, interval t, and the final state
at which the complex was fully formed upon the addition of
metal ion, respectively. Binding constant K can be determined
from the plot of the linear regression of log[(F-F0)/(Fm-F)]
against log[M] in Eq. (5) that is derived from Eq. 4 to obtain
the intercept as log K and the slope n .

log
F−F0

Fm−F

� �
¼ log K þ n log M½ � ð5Þ

Results and Discussion

The strategy from the outset in designing this probe was based
on a stable fluorenyl core. The synthesis of the chromophore is

Fig. 2 Absorbance (a) and fluorescence (b) response of various metal
ions relative to AXF-Al at 4 μM concentration in EtOH; (c) ratio of
emission from complex to that of the ligand at 433 nm

Fig. 3 Sample of AXF-Al (2 μM in EtOH) before (left vial) and after
(right vial) treatment with molar equivalent Al3+ with white light (left
figure) and under 365 nm UVexcitation (right figure)
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presented in Scheme 1. Ethyl groups in the fluorenyl 9-
position were used to enhance solubility. One of the key

starting materials was the benzothiazole fluorenyl aldehyde
(D ), synthesized by an efficient Stille coupling reaction
starting from the bromofluorene aldehyde (B ) and tri-n -
butyltinbenzothiazole (C) in good yield, 72 % (Scheme 1).
This is an improvement on past literature, which reported
condensation of a fluorene-2,7-dicarbaldehyde with a mole
equivalent of o-thioaniline.[29, 54] Methyl pyrazolyl aniline
diethylphosphonate (G) was successfully synthesized using
solvent-free condensation of the (3,5-dimethyl-1H-pyrazol-1-
yl)methanol (F ) with the commercially available diethyl 4-
aminobenzylphosphonate (E ) in a melt reaction. The incor-
poration of a styryl group directly connected to the π-bridge
was employed to increase the conjugation of the chromo-
phore, achieved by the Horner-Wadsworth-Emmons
olefination of the resulting phosphonate, carried out in THF
as a solvent with potassium t -butoxide as the base [55, 56].

Fig. 4 (a) Absorbance spectra showing response of the titration of Al3+

with probe (2 μM in EtOH); (b) fluorescence response of the titration of
Al3+ with probe (2 μM in EtOH); (c) determination of binding constants
for probe with Al3+ using a linear regression plot of log [(F-F0)/(Fm-F)]
vs. log [Al3+], Eq. 2 correlation coefficient of r =0.9932

Fig. 5 (a) Absorption (black), emission (red), and 2PA (green semi-
circles) spectra of the probe in EtOH and anisotropy (blue) in glycerol;
(b) absorption (black), emission (red), and 2PA spectra (green semi-
circles) of the equilibrium complex (probe-Al complex) in ethanol
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The probe was isolated as an air-stable solid with good solu-
bility in a variety of solvents.

Selectivity and Optical Properties of the Chemoselective
Probe

The UVabsorption and emission spectra of the probe showed
a typical bathochromic shift with increasing solvent polarity
(Fig. 1). The fluorescent enhancement effect of AXF-Al in
EtOH was investigated by excitation at λ ex=375 nm, and the
fluorescence response of the probe to various cations and its
selectivity for Al3+ were recorded, as shown in Fig. 2. Ethanol
was chosen as the solvent as it served to solvate both the
ligand and the metal salts, as well as providing a similarity
to an aqueous environment. The fluorescence spectral changes
were monitored upon interaction with 2 μM EtOH solutions
of the targeted metal perchlorates. No significant spectral
changes were observed for the probe in the presence of group
12 congeners (Zn2+ and Cd2+), first-row transition metals
(Fe2+ and Cu2+), and environmentally important metals
(Hg2+ and Pb2+), plus alkaline earth metals (Ca2+ and Mg2+);
see Fig. 2a and b. The experimental results suggest that this
molecule has notable selectivity toward Al3+ (Fig. 2c), and the
response is visible to the naked eye (Fig. 3).

The UV–vis absorption spectra of the probe and its inter-
action through titration with Al3+ (Fig. 4a) were measured in
EtOH solutions. The probe exhibited a peak absorption at
382 nm and a gradually blue-shift upon the sequential addition
of Al3+ (Fig. 4b). A selective ion probe that gives a positive
response rather than fluorescent quenching upon analyte bind-
ing is usually preferred to promote sensitivity. The emission
spectra of the free ligand titrated with Al3+ (Fig. 4b) resulted in
the appearance of a new fluorecence band at 432 nm, shifted
from 532 nm for the pure ligand. This decrease in wavelength

upon binding suggests that the relaxation energy from the
excited state is larger for the complex than for the unbound
ligand. The large 100 nm hypsochromic shift could be attrib-
uted to a reduction in intermolecular charge transfer (ICT)
[57]. This dramatic result found with Al3+ and the probe may
be a consequence of the size and polarizability of the Al3+ ion.

The Al3+ is believed to interact strongly with the pyrazolyl
nitrogens and, even though the resulting molecular assemblies
are unknown, it is believed to restrict the excited state vibra-
tions of the chromophore, resulting in an increase in fluores-
cence properties [58]. A single set of isobestic points was
observed in both the absorption and emission spectra,
suggesting a single equilibrium was reached in complexation.

Binding Constant of Metal Complex

The binding constantK for the probe with Al3+ was calculated
from the titration curve (Fig. 4c). It revealed a 1:1 ratio of the
ligand with aluminum in the complex at equilibrium. These
results are comparable to those reported for the 1:2 complex-
ation of ligand to metal for a 1:2 zinc-butylcalix [4]arene [59],
a cobalt-quercetin [60], a lithium-anthraquinone cryptand
[61]. A binding constant of log K =5.5 was determined by
linear fitting using Eq. 5. For both biochemical and environ-
mental sensing, a successful metallo-responsive fluorophore
would need a high binding constant to ensure detection limits
in the parts-per-billion range [62]. Tentatively, we assume that
the smaller ion binds with the dimethyl pyrazole chelate
present in the ligand, thus resulting in a 1:1 assembly that
engages the tridenticity of the ligand. This would result in the
direct coordination of the aniline nitrogen to the metal. As the
donating ability of the aniline nitrogen to the extended chro-
mophore decreases, we see a reduction in the intramolecular
charge transfer (ICT), reflected in the blue shift on binding.

Fig. 6 ORTEP drawing for
AXF-Al with the numbering
scheme. Thermal ellipsoids are
shown with the 50 % probability
level. Hydrogen atoms have been
omitted for clarity

Fig. 7 Optimized geometries for
AXF-Al (a) and the probe-
aluminum complex (b)
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Nonlinear Spectroscopy

Two-photon absorption cross sections (δ2PA) of the probe and
its complex with aluminum were determined over a broad
spectral region, 740–900 nm, using a two-photon-induced
fluorescence measurement technique [46] in EtOH. 2PA of
the complex was measured using a probe/Al3+ ratio of 1:1.
Figure 5 shows the 2PA spectrum, with maxima 220 GM at
810 nm and 235 GM at 810 nm for the probeAXF-Al and the
metal complex respectively. The long wavelength 2PA band is
close to the 1PA band, which is typical of an unsymmetrical
fluorene derivative [63]. This change in the δ2PA of the alu-
minum complex is nominal when compared with ligand.
Well-defined long wavelength 2PA bands in the spectral range
of one-photon allowed transitions are associated with the
relatively large changes in the stationary dipole moments of
the ligand and ligand-metal complex (|Δμ|~5–10 D) under the

S0→S1 electronic excitation [64]. The 2PA process is a third-
order nonlinear optical property with a strong dependence on
the intramolecular charge transfer (ICT) process [65]. The
architecture of this dye promotes the strong 2PA cross sections
observed in linear conjugated molecules with D-π-A motif,
which is contingent on the electronic contribution of the
donor. A stronger donor will enhance the charge transfer
process and, thus, increase the transition dipole moments,
generally leading to greater values of δ2PA due to enhanced
ICT processes [66].

Single-Crystal X-Ray Structural Analysis

Single crystals for X-ray analysis were grown by the diffusion
of hexane into a concentrated solution of AXF-Al in ethyl
acetate. The central core of the molecule (Fig. 6) shows only
slight deviation from planarity. The revealed planarity of the

a

b

Fig. 8 Isosurface plots of the
HOMO-1, HOMO, LUMO, and
LUMO+1 for AXF-Al (a) and
the probe-aluminum complex (b)
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benzathiazole-fluorene-styryl unit suggests strong conjuga-
tion within the central molecular core. The ethyl substituents
on both sides of the fluorene moiety prevent significant over-
lap of fluorene fragments in the crystal. However, some side
overlap with a distance between the main planes of fluorene
fragments equal to 3.289 Å is observed, suggesting the
possibility of π-π intermolecular interactions in the crystal.
Attention is drawn to the aniline pyrazolyl unit. The C(30)-
N(2) bond of the aniline is 1.408 Å, which indicates the
donation of N lone pairs to the delocalized system [67].

Quantum Chemical Calculations

The molecular geometries of the ligand and its Al3+ complex
were optimized at the B3LYP/6-311G* level in the density
functional theory (DFT) formalism using the GAUSSIAN 09
program package [68] to study the effect of the nature of the
ligand in the metal complex on 2PA properties. The geome-
tries corresponding to global minima, obtained with the semi-
empirical AM1 method, were similar to DFT results.

To gain insight into the effects of Al3+ on the 2PA proper-
ties of the chromophore, quantum chemical calculations were
performed for a model of the ligand as a metal–ligand com-
plex model, excluding the non-coordinating perchlorate for
simplicity. The model complex was based upon proposed
tridentate coordination of the ligand via the aniline nitrogen
and the two vacant nitrogens on the pyrazoles and three
solvent (EtOH) molecules.

The optimized geometries obtained for the ligand
corresponded to results obtained from the single crystal x-
ray analysis (Fig. 6). The aniline C-N distance of the ligand in
the calculated model, 1.421 Å, is in agreement with what was
found in the crystal structure, 1.408 Å. In the calculated
complex, there is an increase of this bond length to 1.502 Å,
indicating perturbation of the N’s donating ability upon ligat-
ing to metal. The model complex provides favorable molecu-
lar geometry as the Al–N(pz) distances were 1.976 and
2.033 Å, in the range of a normal coordinated heterocyclic
Al–N bond [69] while the Al–N(aniline) bond of 2.211 Å is
within literature tolerance [70].

Generally, the frontier molecular orbitals, especially HO-
MO−1, HOMO, LUMO, and LUMO+1, make important
contributions to electronic transition in both single- and two-
photon excitation. In Figs. 7 and 8, the contours of the non-
degenerate HOMO−1, HOMO, LUMO, and LUMO+1 for the
ligand and its Al complex are shown.We tentatively assign the
HOMO-LUMO transition in the contour diagrams as the π→π*

transition of the chromophore. Upon complexation, the HO-
MO–LUMO transition can be thought to be a reflection of the
intra-ligand charge transfer (ILCT).

In the contour maps of the ligand, both the HOMO and the
HOMO-1 show a significant electronic contribution on the
donor side of the molecule, which is in agreement with the

high electron-donating ability of the aniline unit with minimal
contribution from the benzothiazole. In comparing the energy
level diagrams of the ligand and its complex with the Al(III)
ion, it is found that complexation results in an inversion of the
position of the HOMO and LUMO. The electron density of
the LUMO is now centered around the acidic metal center,
while that of the HOMO is predominantly lying on the
benzothiazole unit. From the perspective of the HOMO of
the ligand as well as Al complex, it can be concluded that
electron donation from the amino nitrogen is sufficiently
reduced in the metal complex.

Conclusions

We have successfully synthesized and comprehensively char-
acterized the fluorene-based aluminum probeAXF-Al , which
offers a ratiometric means for the fluorometric analysis of Al3+

in the ppb range. Up-converted emission via 2PA of the probe
and Al3+ complex was demonstrated. This means that this
probe has a very high fluorescent imaging selectivity to Al3+

among a number of common metal ions. Theoretical calcula-
tions carried out at the B3LYP/6-311G* level in the density
functional theory (DFT) formalism show optimized geometry
consistent with the crystal structure, and upon metal binding,
there is nominal change in the value of δ2PA cross section in
the metal complexes. Significantly, this new probe exhibited
selectivity for Al3+ relative to a number of other common
metal cations.
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